using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Web; namespace BookingJieFeng.Helper { /// /// 高斯模糊算法 /// public class GaussianHelper { public static double[,] Calculate1DSampleKernel(double deviation, int size) { double[,] ret = new double[size, 1]; double sum = 0; int half = size / 2; for (int i = 0; i < size; i++) { ret[i, 0] = 1 / (Math.Sqrt(2 * Math.PI) * deviation) * Math.Exp(-(i - half) * (i - half) / (2 * deviation * deviation)); sum += ret[i, 0]; } return ret; } public static double[,] Calculate1DSampleKernel(double deviation) { int size = (int)Math.Ceiling(deviation * 3) * 2 + 1; return Calculate1DSampleKernel(deviation, size); } public static double[,] CalculateNormalized1DSampleKernel(double deviation) { return NormalizeMatrix(Calculate1DSampleKernel(deviation)); } public static double[,] NormalizeMatrix(double[,] matrix) { double[,] ret = new double[matrix.GetLength(0), matrix.GetLength(1)]; double sum = 0; for (int i = 0; i < ret.GetLength(0); i++) { for (int j = 0; j < ret.GetLength(1); j++) sum += matrix[i, j]; } if (sum != 0) { for (int i = 0; i < ret.GetLength(0); i++) { for (int j = 0; j < ret.GetLength(1); j++) ret[i, j] = matrix[i, j] / sum; } } return ret; } public static double[,] GaussianConvolution(double[,] matrix, double deviation) { double[,] kernel = CalculateNormalized1DSampleKernel(deviation); double[,] res1 = new double[matrix.GetLength(0), matrix.GetLength(1)]; double[,] res2 = new double[matrix.GetLength(0), matrix.GetLength(1)]; //x-direction for (int i = 0; i < matrix.GetLength(0); i++) { for (int j = 0; j < matrix.GetLength(1); j++) res1[i, j] = processPoint(matrix, i, j, kernel, 0); } //y-direction for (int i = 0; i < matrix.GetLength(0); i++) { for (int j = 0; j < matrix.GetLength(1); j++) res2[i, j] = processPoint(res1, i, j, kernel, 1); } return res2; } private static double processPoint(double[,] matrix, int x, int y, double[,] kernel, int direction) { double res = 0; int half = kernel.GetLength(0) / 2; for (int i = 0; i < kernel.GetLength(0); i++) { int cox = direction == 0 ? x + i - half : x; int coy = direction == 1 ? y + i - half : y; if (cox >= 0 && cox < matrix.GetLength(0) && coy >= 0 && coy < matrix.GetLength(1)) { res += matrix[cox, coy] * kernel[i, 0]; } } return res; } /// /// 对颜色值进行灰色处理 /// /// /// private Color grayscale(Color cr) { return Color.FromArgb(cr.A, (int)(cr.R * .3 + cr.G * .59 + cr.B * 0.11), (int)(cr.R * .3 + cr.G * .59 + cr.B * 0.11), (int)(cr.R * .3 + cr.G * .59 + cr.B * 0.11)); } /// /// 对图片进行高斯模糊 /// /// 模糊数值,数值越大模糊越很 /// 一个需要处理的图片 /// public Bitmap FilterProcessImage(double d, Bitmap image) { Bitmap ret = new Bitmap(image.Width, image.Height); Double[,] matrixR = new Double[image.Width, image.Height]; Double[,] matrixG = new Double[image.Width, image.Height]; Double[,] matrixB = new Double[image.Width, image.Height]; for (int i = 0; i < image.Width; i++) { for (int j = 0; j < image.Height; j++) { //matrix[i, j] = grayscale(image.GetPixel(i, j)).R; matrixR[i, j] = image.GetPixel(i, j).R; matrixG[i, j] = image.GetPixel(i, j).G; matrixB[i, j] = image.GetPixel(i, j).B; } } matrixR = GaussianHelper.GaussianConvolution(matrixR, d); matrixG = GaussianHelper.GaussianConvolution(matrixG, d); matrixB = GaussianHelper.GaussianConvolution(matrixB, d); for (int i = 0; i < image.Width; i++) { for (int j = 0; j < image.Height; j++) { Int32 R = (int)Math.Min(255, matrixR[i, j]); Int32 G = (int)Math.Min(255, matrixG[i, j]); Int32 B = (int)Math.Min(255, matrixB[i, j]); ret.SetPixel(i, j, Color.FromArgb(R, G, B)); } } return ret; } } }