You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

708 lines
21 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

unit u_sys_sysinfo;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;
type
TcpuMSG = record
ID1 : string;
ID2 : String;
ID3 : String;
ID4 : String;
PValue : String;
FValue : String;
MValue : String;
SValue : String;
Vendor : String;
end;
function GetDisplayFrequency: Integer;
function GetIdeSerialNumber: pchar;
function GetCPUSpeed: Double;
function GetDisplayDevice:string;
function GetProcessorType:string;
function GetWindowsVersion: string;
function GetIdeDiskSerialNumber(var SerialNumber: string; var ModelNumber: string;
var FirmwareRev: string; var TotalAddressableSectors: ULong;
var SectorCapacity: ULong; var SectorsPerTrack: Word): Boolean; //得到硬盘物理号
function GetcpuMSG:TcpuMSG;
implementation
const
ID_BIT = $200000; // EFLAGS ID bit
type
TCPUID = array[1..4] of Longint;
TVendor = array [0..11] of char;
function GetCPUSpeed: Double;
const
DelayTime = 500; // 时间单位是毫秒
var
TimerHi, TimerLo: DWORD;
PriorityClass, Priority: Integer;
begin
PriorityClass := GetPriorityClass(GetCurrentProcess);
Priority := GetThreadPriority(GetCurrentThread);
SetPriorityClass(GetCurrentProcess, REALTIME_PRIORITY_CLASS);
SetThreadPriority(GetCurrentThread, THREAD_PRIORITY_TIME_CRITICAL);
Sleep(10);
asm
dw 310Fh // rdtsc
mov TimerLo, eax
mov TimerHi, edx
end;
Sleep(DelayTime);
asm
dw 310Fh // rdtsc
sub eax, TimerLo
sbb edx, TimerHi
mov TimerLo, eax
mov TimerHi, edx
end;
SetThreadPriority(GetCurrentThread, Priority);
SetPriorityClass(GetCurrentProcess, PriorityClass);
Result := TimerLo / (1000.0 * DelayTime);
end;
//*************
function GetCpuSpeed9: Comp;
var
t: DWORD;
mhi, mlo, nhi, nlo: DWORD;
t0, t1, chi, clo, shr32: Comp;
begin
shr32 := 65536;
shr32 := shr32 * 65536;
t := GetTickCount;
while t = GetTickCount do begin end;
asm
DB 0FH
DB 031H
mov mhi,edx
mov mlo,eax
end;
while GetTickCount < (t + 1000) do begin end;
asm
DB 0FH
DB 031H
mov nhi,edx
mov nlo,eax
end;
chi := mhi; if mhi < 0 then chi := chi + shr32;
clo := mlo; if mlo < 0 then clo := clo + shr32;
t0 := chi * shr32 + clo;
chi := nhi; if nhi < 0 then chi := chi + shr32;
clo := nlo; if nlo < 0 then clo := clo + shr32;
t1 := chi * shr32 + clo;
Result := (t1 - t0) / 1E6;
end;
function GetCPUSpeed1: Double;
const
DelayTime = 500; // measure time in ms
var
TimerHi, TimerLo: DWORD;
PriorityClass, Priority: Integer;
begin
PriorityClass := GetPriorityClass(GetCurrentProcess);
Priority := GetThreadPriority(GetCurrentThread);
SetPriorityClass(GetCurrentProcess, REALTIME_PRIORITY_CLASS);
SetThreadPriority(GetCurrentThread, THREAD_PRIORITY_TIME_CRITICAL);
Sleep(10);
asm
dw 310Fh // rdtsc
mov TimerLo, eax
mov TimerHi, edx
end;
Sleep(DelayTime);
asm
dw 310Fh // rdtsc
sub eax, TimerLo
sbb edx, TimerHi
mov TimerLo, eax
mov TimerHi, edx
end;
SetThreadPriority(GetCurrentThread, Priority);
SetPriorityClass(GetCurrentProcess, PriorityClass);
Result := TimerLo / (1000.0 * DelayTime);
end;
function RDTSC : Int64; assembler;
asm
db $0F, $31 // opcode for RDTSC
end;
function RDQPC : Int64;
begin
QueryPerformanceCounter(result);
end;
function CPUSpeed : Integer;
var
f,tsc,pc : Int64;
begin
if QueryPerformanceFrequency(f) then
begin
Sleep(0);
pc := RDQPC;
tsc := RDTSC;
Sleep(100);
pc := RDQPC-pc;
tsc := RDTSC-tsc;
result := round(tsc*f/(pc*1000000));
end
else
result := -1;
end;
//***************
//获取第一个IDE硬盘的序列号
function GetIdeSerialNumber : pchar;
const IDENTIFY_BUFFER_SIZE = 512;
type
TIDERegs = packed record
bFeaturesReg : BYTE; // Used for specifying SMART "commands".
bSectorCountReg : BYTE; // IDE sector count register
bSectorNumberReg : BYTE; // IDE sector number register
bCylLowReg : BYTE; // IDE low order cylinder value
bCylHighReg : BYTE; // IDE high order cylinder value
bDriveHeadReg : BYTE; // IDE drive/head register
bCommandReg : BYTE; // Actual IDE command.
bReserved : BYTE; // reserved for future use. Must be zero.
end;
TSendCmdInParams = packed record
// Buffer size in bytes
cBufferSize : DWORD;
// Structure with drive register values.
irDriveRegs : TIDERegs;
// Physical drive number to send command to (0,1,2,3).
bDriveNumber : BYTE;
bReserved : Array[0..2] of Byte;
dwReserved : Array[0..3] of DWORD;
bBuffer : Array[0..0] of Byte; // Input buffer.
end;
TIdSector = packed record
wGenConfig : Word;
wNumCyls : Word;
wReserved : Word;
wNumHeads : Word;
wBytesPerTrack : Word;
wBytesPerSector : Word;
wSectorsPerTrack : Word;
wVendorUnique : Array[0..2] of Word;
sSerialNumber : Array[0..19] of CHAR;
wBufferType : Word;
wBufferSize : Word;
wECCSize : Word;
sFirmwareRev : Array[0..7] of Char;
sModelNumber : Array[0..39] of Char;
wMoreVendorUnique : Word;
wDoubleWordIO : Word;
wCapabilities : Word;
wReserved1 : Word;
wPIOTiming : Word;
wDMATiming : Word;
wBS : Word;
wNumCurrentCyls : Word;
wNumCurrentHeads : Word;
wNumCurrentSectorsPerTrack : Word;
ulCurrentSectorCapacity : DWORD;
wMultSectorStuff : Word;
ulTotalAddressableSectors : DWORD;
wSingleWordDMA : Word;
wMultiWordDMA : Word;
bReserved : Array[0..127] of BYTE;
end;
PIdSector = ^TIdSector;
TDriverStatus = packed record
// 驱动器返回的错误代码无错则返回0
bDriverError : Byte;
// IDE出错寄存器的内容只有当bDriverError 为 SMART_IDE_ERROR 时有效
bIDEStatus : Byte;
bReserved : Array[0..1] of Byte;
dwReserved : Array[0..1] of DWORD;
end;
TSendCmdOutParams = packed record
// bBuffer的大小
cBufferSize : DWORD;
// 驱动器状态
DriverStatus : TDriverStatus;
// 用于保存从驱动器读出的数据的缓冲区实际长度由cBufferSize决定
bBuffer : Array[0..0] of BYTE;
end;
var hDevice : THandle;
cbBytesReturned : DWORD;
ptr : PChar;
SCIP : TSendCmdInParams;
aIdOutCmd : Array [0..(SizeOf(TSendCmdOutParams)+IDENTIFY_BUFFER_SIZE-1)-1] of Byte;
IdOutCmd : TSendCmdOutParams absolute aIdOutCmd;
procedure ChangeByteOrder( var Data; Size : Integer );
var ptr : PChar;
i : Integer;
c : Char;
begin
ptr := @Data;
for i := 0 to (Size shr 1)-1 do begin
c := ptr^;
ptr^ := (ptr+1)^;
(ptr+1)^ := c;
Inc(ptr,2);
end;
end;
begin
Result := ''; // 如果出错则返回空串
if SysUtils.Win32Platform=VER_PLATFORM_WIN32_NT then begin// Windows NT, Windows 2000
// 提示! 改变名称可适用于其它驱动器,如第二个驱动器: '\\.\PhysicalDrive1\'
hDevice := CreateFile( '\\.\PhysicalDrive0', GENERIC_READ or GENERIC_WRITE,
FILE_SHARE_READ or FILE_SHARE_WRITE, nil, OPEN_EXISTING, 0, 0 );
end else // Version Windows 95 OSR2, Windows 98
hDevice := CreateFile( '\\.\SMARTVSD', 0, 0, nil, CREATE_NEW, 0, 0 );
if hDevice=INVALID_HANDLE_VALUE then Exit;
try
FillChar(SCIP,SizeOf(TSendCmdInParams)-1,#0);
FillChar(aIdOutCmd,SizeOf(aIdOutCmd),#0);
cbBytesReturned := 0;
// Set up data structures for IDENTIFY command.
with SCIP do begin
cBufferSize := IDENTIFY_BUFFER_SIZE;
// bDriveNumber := 0;
with irDriveRegs do begin
bSectorCountReg := 1;
bSectorNumberReg := 1;
// if Win32Platform=VER_PLATFORM_WIN32_NT then bDriveHeadReg := $A0
// else bDriveHeadReg := $A0 or ((bDriveNum and 1) shl 4);
bDriveHeadReg := $A0;
bCommandReg := $EC;
end;
end;
if not DeviceIoControl( hDevice, $0007c088, @SCIP, SizeOf(TSendCmdInParams)-1,
@aIdOutCmd, SizeOf(aIdOutCmd), cbBytesReturned, nil ) then Exit;
finally
CloseHandle(hDevice);
end;
with PIdSector(@IdOutCmd.bBuffer)^ do begin
ChangeByteOrder( sSerialNumber, SizeOf(sSerialNumber) );
(PChar(@sSerialNumber)+SizeOf(sSerialNumber))^ := #0;
Result := PChar(@sSerialNumber);
end;
end;
// 更多关于 S.M.A.R.T. ioctl 的信息可查看:
// http://www.microsoft.com/hwdev/download/respec/iocltapi.rtf
// MSDN库中也有一些简单的例子
// Windows Development -> Win32 Device Driver Kit ->
// SAMPLE: SmartApp.exe Accesses SMART stats in IDE drives
// 还可以查看 http://www.mtgroup.ru/~alexk
// IdeInfo.zip - 一个简单的使用了S.M.A.R.T. Ioctl API的Delphi应用程序
// 注意:
// WinNT/Win2000 - 你必须拥有对硬盘的读/写访问权限
// Win98
// SMARTVSD.VXD 必须安装到 \windows\system\iosubsys
// (不要忘记在复制后重新启动系统)
function GetDisplayFrequency: Integer;
var
DeviceMode: TDeviceMode;
// 这个函数返回的显示刷新率是以Hz为单位的
begin
EnumDisplaySettings(nil, Cardinal(-1), DeviceMode);
Result := DeviceMode.dmDisplayFrequency;
end;
function GetDisplayDevice: string;
var
lpDisplayDevice: TDisplayDevice;
dwFlags: DWORD;
cc: DWORD;
begin
lpDisplayDevice.cb := sizeof(lpDisplayDevice);
dwFlags := 0;
cc:= 0;
while EnumDisplayDevices(nil, cc, lpDisplayDevice , dwFlags) do
begin
Inc(cc);
if (lpDisplayDevice.DeviceName='\\.\Display1') or (lpDisplayDevice.DeviceName='\\.\DISPLAY1') then
Result :=lpDisplayDevice.DeviceString;
//ListBox1.Items.Add(lpDisplayDevice.DeviceString); {there is also additional information in lpDisplayDevice}
end;
end;
function GetProcessorType:string;
const
PROCESSOR_INTEL_386=386;
PROCESSOR_INTEL_486=486;
PROCESSOR_INTEL_PENTIUM=586;
PROCESSOR_INTEL_IA64=2200;
PROCESSOR_MIPS_R4000=4000;
PROCESSOR_ALPHA_21064=21064;
var
SysInfo: TSYSTEMINFO;
CPUName:string;
begin
GetSystemInfo(SysInfo);//获得CPU信息
case SysInfo.dwProcessorType of
PROCESSOR_INTEL_386:CPUName:=format('%d%s',[SysInfo.dwNumberofProcessors,'Intel 80386']);
PROCESSOR_INTEL_486:CPUName:=format('%d%s',[SysInfo.dwNumberofProcessors, 'Intel 80486']);
PROCESSOR_INTEL_PENTIUM:CPUName:=format('%d%s',[SysInfo.dwNumberOfProcessors, 'Intel Pentium']);
PROCESSOR_MIPS_R4000:CPUName:=format('%d%s',[SysInfo.dwNumberOfProcessors, 'MIPS R4000']);
PROCESSOR_ALPHA_21064:CPUName:=format('%d%s',[SysInfo.dwNumberOfProcessors, 'ALPHA 21064']);
end;
Result :=CPUName;
end;
function GetIdeDiskSerialNumber(var SerialNumber: string; var ModelNumber: string;
var FirmwareRev: string; var TotalAddressableSectors: ULong;
var SectorCapacity: ULong; var SectorsPerTrack: Word): Boolean; //得到硬盘物理号
type
TSrbIoControl = packed record
HeaderLength: ULong;
Signature: array[0..7] of Char;
Timeout: ULong;
ControlCode: ULong;
ReturnCode: ULong;
Length: ULong;
end;
SRB_IO_CONTROL = TSrbIoControl;
PSrbIoControl = ^TSrbIoControl;
TIDERegs = packed record
bFeaturesReg: Byte; // Used for specifying SMART "commands".
bSectorCountReg: Byte; // IDE sector count register
bSectorNumberReg: Byte; // IDE sector number register
bCylLowReg: Byte; // IDE low order cylinder value
bCylHighReg: Byte; // IDE high order cylinder value
bDriveHeadReg: Byte; // IDE drive/head register
bCommandReg: Byte; // Actual IDE command.
bReserved: Byte; // reserved. Must be zero.
end;
IDEREGS = TIDERegs;
PIDERegs = ^TIDERegs;
TSendCmdInParams = packed record
cBufferSize: DWORD;
irDriveRegs: TIDERegs;
bDriveNumber: Byte;
bReserved: array[0..2] of Byte;
dwReserved: array[0..3] of DWORD;
bBuffer: array[0..0] of Byte;
end;
SENDCMDINPARAMS = TSendCmdInParams;
PSendCmdInParams = ^TSendCmdInParams;
TIdSector = packed record
wGenConfig: Word;
wNumCyls: Word;
wReserved: Word;
wNumHeads: Word;
wBytesPerTrack: Word;
wBytesPerSector: Word;
wSectorsPerTrack: Word;
wVendorUnique: array[0..2] of Word;
sSerialNumber: array[0..19] of Char;
wBufferType: Word;
wBufferSize: Word;
wECCSize: Word;
sFirmwareRev: array[0..7] of Char;
sModelNumber: array[0..39] of Char;
wMoreVendorUnique: Word;
wDoubleWordIO: Word;
wCapabilities: Word;
wReserved1: Word;
wPIOTiming: Word;
wDMATiming: Word;
wBS: Word;
wNumCurrentCyls: Word;
wNumCurrentHeads: Word;
wNumCurrentSectorsPerTrack: Word;
ulCurrentSectorCapacity: ULong;
wMultSectorStuff: Word;
ulTotalAddressableSectors: ULong;
wSingleWordDMA: Word;
wMultiWordDMA: Word;
bReserved: array[0..127] of Byte;
end;
PIdSector = ^TIdSector;
const
IDE_ID_FUNCTION = $EC;
IDENTIFY_BUFFER_SIZE = 512;
DFP_RECEIVE_DRIVE_DATA = $0007C088;
IOCTL_SCSI_MINIPORT = $0004D008;
IOCTL_SCSI_MINIPORT_IDENTIFY = $001B0501;
DataSize = sizeof(TSendCmdInParams) - 1 + IDENTIFY_BUFFER_SIZE;
BufferSize = sizeof(SRB_IO_CONTROL) + DataSize;
W9xBufferSize = IDENTIFY_BUFFER_SIZE + 16;
var
hDevice: THandle;
cbBytesReturned: DWORD;
pInData: PSendCmdInParams;
pOutData: Pointer; // PSendCmdOutParams
Buffer: array[0..BufferSize - 1] of Byte;
srbControl: TSrbIoControl absolute Buffer;
procedure ChangeByteOrder(var Data; Size: Integer);
var ptr: PChar;
i: Integer;
c: Char;
begin
ptr := @Data;
for i := 0 to (Size shr 1) - 1 do
begin
c := ptr^;
ptr^ := (ptr + 1)^;
(ptr + 1)^ := c;
Inc(ptr, 2);
end;
end;
begin
Result := False;
FillChar(Buffer, BufferSize, #0);
if Win32Platform = VER_PLATFORM_WIN32_NT then
begin // Windows NT, Windows 2000
// Get SCSI port handle
hDevice := CreateFile('\\.\Scsi0:',
GENERIC_READ or GENERIC_WRITE,
FILE_SHARE_READ or FILE_SHARE_WRITE,
nil, OPEN_EXISTING, 0, 0);
if hDevice = INVALID_HANDLE_VALUE then Exit;
try
srbControl.HeaderLength := sizeof(SRB_IO_CONTROL);
System.Move('SCSIDISK', srbControl.Signature, 8);
srbControl.Timeout := 2;
srbControl.Length := DataSize;
srbControl.ControlCode := IOCTL_SCSI_MINIPORT_IDENTIFY;
pInData := PSendCmdInParams(PChar(@Buffer)
+ sizeof(SRB_IO_CONTROL));
pOutData := pInData;
with pInData^ do
begin
cBufferSize := IDENTIFY_BUFFER_SIZE;
bDriveNumber := 0;
with irDriveRegs do
begin
bFeaturesReg := 0;
bSectorCountReg := 1;
bSectorNumberReg := 1;
bCylLowReg := 0;
bCylHighReg := 0;
bDriveHeadReg := $A0;
bCommandReg := IDE_ID_FUNCTION;
end;
end;
if not DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
@Buffer, BufferSize, @Buffer, BufferSize,
cbBytesReturned, nil) then Exit;
finally
CloseHandle(hDevice);
end;
end
else
begin // Windows 95 OSR2, Windows 98
hDevice := CreateFile('\\.\SMARTVSD', 0, 0, nil,
CREATE_NEW, 0, 0);
if hDevice = INVALID_HANDLE_VALUE then Exit;
try
pInData := PSendCmdInParams(@Buffer);
pOutData := @pInData^.bBuffer;
with pInData^ do
begin
cBufferSize := IDENTIFY_BUFFER_SIZE;
bDriveNumber := 0;
with irDriveRegs do
begin
bFeaturesReg := 0;
bSectorCountReg := 1;
bSectorNumberReg := 1;
bCylLowReg := 0;
bCylHighReg := 0;
bDriveHeadReg := $A0;
bCommandReg := IDE_ID_FUNCTION;
end;
end;
if not DeviceIoControl(hDevice, DFP_RECEIVE_DRIVE_DATA,
pInData, sizeof(TSendCmdInParams) - 1, pOutData,
W9xBufferSize, cbBytesReturned, nil) then Exit;
finally
CloseHandle(hDevice);
end;
end;
with PIdSector(PChar(pOutData) + 16)^ do
begin
ChangeByteOrder(sSerialNumber, sizeof(sSerialNumber));
SetString(SerialNumber, sSerialNumber, sizeof(sSerialNumber)); //硬盘生产序号
ChangeByteOrder(sModelNumber, sizeof(sModelNumber));
SetString(ModelNumber, sModelNumber, sizeof(sModelNumber)); //硬盘型号
ChangeByteOrder(sFirmwareRev, sizeof(sFirmwareRev));
SetString(FirmwareRev, sFirmwareRev, sizeof(sFirmwareRev)); //硬盘硬件版本
Result := True;
ChangeByteOrder(ulTotalAddressableSectors, sizeof(ulTotalAddressableSectors));
TotalAddressableSectors := ulTotalAddressableSectors; //硬盘ulTotalAddressableSectors参数
ChangeByteOrder(ulCurrentSectorCapacity, sizeof(ulCurrentSectorCapacity));
SectorCapacity := ulCurrentSectorCapacity; //硬盘wBytesPerSector参数
ChangeByteOrder(wNumCurrentSectorsPerTrack, sizeof(wNumCurrentSectorsPerTrack));
SectorsPerTrack := wNumCurrentSectorsPerTrack; //硬盘wSectorsPerTrack参数
end;
end;
function GetWindowsVersion: string;
var
// windows api structure
VersionInfo: TOSVersionInfo;
begin
// get size of the structure
VersionInfo.dwOSVersionInfoSize := SizeOf(VersionInfo);
// populate the struct using api call
GetVersionEx(VersionInfo);
// platformid gets the core platform
// major and minor versions also included.
with VersionInfo do
begin
case dwPlatformid of
0 : begin
result := 'Windows 3.11';
end; // end 0
1 : begin
case dwMinorVersion of
0 : result := 'Windows 95';
10: begin
if ( szCSDVersion[ 1 ] = 'A' ) then
Result :='Windows 98 SE'
else
Result := 'Windows 98';
end; // end 10
90 : result := 'Windows Millenium';
else
result := 'Unknown Version';
end; // end case
end; // end 1
2 : begin
case dwMajorVersion of
3 : result := 'Windows NT ' +
IntToStr(dwMajorVersion) + '.' +
IntToStr(dwMinorVersion);
4 : result := 'Windows NT ' +
IntToStr(dwMajorVersion) + '.' +
IntToStr(dwMinorVersion);
5 : begin
case dwMinorVersion of
0 : result := 'Windows 2000';
1 : result := 'Windows Whistler';
end; // end case
end; // end 5
else
result := 'Unknown Version';
end; // end case
// service packs apply to the NT/2000 platform
if szCSDVersion <> '' then
result := result + ' Service pack: ' + szCSDVersion;
end; // end 2
else
result := 'Unknown Platform';
end; // end case
// add build info.
result := result + ', Build: ' +
IntToStr(Loword(dwBuildNumber)) ;
end; // end version info
end; // GetWindowsVersion
function IsCPUID_Available : Boolean; register;
asm
PUSHFD {direct access to flags no possible, only via stack}
POP EAX {flags to EAX}
MOV EDX,EAX {save current flags}
XOR EAX,ID_BIT {not ID bit}
PUSH EAX {onto stack}
POPFD {from stack to flags, with not ID bit}
PUSHFD {back to stack}
POP EAX {get back to EAX}
XOR EAX,EDX {check if ID bit affected}
JZ @exit {no, CPUID not availavle}
MOV AL,True {Result=True}
@exit:
end;
function GetCPUID : TCPUID; assembler; register;
asm
PUSH EBX {Save affected register}
PUSH EDI
MOV EDI,EAX {@Resukt}
MOV EAX,1
DW $A20F {CPUID Command}
STOSD {CPUID[1]}
MOV EAX,EBX
STOSD {CPUID[2]}
MOV EAX,ECX
STOSD {CPUID[3]}
MOV EAX,EDX
STOSD {CPUID[4]}
POP EDI {Restore registers}
POP EBX
end;
function GetCPUVendor : TVendor; assembler; register;
asm
PUSH EBX {Save affected register}
PUSH EDI
MOV EDI,EAX {@Result (TVendor)}
MOV EAX,0
DW $A20F {CPUID Command}
MOV EAX,EBX
XCHG EBX,ECX {save ECX result}
MOV ECX,4
@1:
STOSB
SHR EAX,8
LOOP @1
MOV EAX,EDX
MOV ECX,4
@2:
STOSB
SHR EAX,8
LOOP @2
MOV EAX,EBX
MOV ECX,4
@3:
STOSB
SHR EAX,8
LOOP @3
POP EDI {Restore registers}
POP EBX
end;
function GetcpuMSG:TcpuMSG;
var
CPUID : TCPUID;
I : Integer;
S : TVendor;
cups:TcpuMSG ;
begin
for I := Low(CPUID) to High(CPUID) do CPUID[I] := -1;
if IsCPUID_Available then
begin
CPUID := GetCPUID;
cups.ID1 := IntToHex(CPUID[1],8);
cups.ID2 := IntToHex(CPUID[2],8);
cups.ID3 := IntToHex(CPUID[3],8);
cups.ID4 := IntToHex(CPUID[4],8);
cups.PValue:= IntToStr(CPUID[1] shr 12 and 3);
cups.FValue:= IntToStr(CPUID[1] shr 8 and $f);
cups.MValue:= IntToStr(CPUID[1] shr 4 and $f);
cups.SValue:= IntToStr(CPUID[1] and $f);
S := GetCPUVendor;
cups.Vendor:= S;
end
else
begin
cups.Vendor := 'CPUID not available';
end;
result :=cups;
end;
end.